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I. Introduction

The application of Liapunov Theory to the design of stable model tracking
adaptive systems requires use of state variables in formulating the control law
[1-3], and for the important class of problems to be considered the state
variables must be in normal (phase variable) form [4]. Hence complexity of
instrumentation and the presence of measurement noise are likely to be the factors
which most severly limit the practicality of the design. Significant results
which offer means of improving this situation have been reported for the case in
which derivatives of the forcing function appear in the differential equation
of the plant [1,5]. I+ has been shown that the highest-order state which‘mus*
be measured can be reduced in proportion to the number of input derivatives.

The problem treated here has been motivated by the desire to reduce further
the noise énfering the system, and at the same time to find possibilities for
simplifying the complexity of the adaptive controller.

The essential idea is fo consider the problem in which some of the compen-
sating gains are fixed at nominal values, as would be justified if the associated
plant parameters are known with sufficient accuracy. Hence the adaptive control
is applied only to those terms in which the parameters are known with poor
accuracy. Using this approach the tracking error will not in general be asymp-
totically stable, and a criterion is needed to establish that the error will in
tact be satisfactorily bounded. The object of this paper is to derive a test for
such a bound. The result Is a sufficient condition for Lagrange Stability which,
though conservative, offers a basis for design.

Consideration is given to the effect of measurement noise upon the solution,
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Aeronautics and Space Administration.
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and results of simulation are presented, illustrating an application of the method.

I't. Description of the Adaptive System

The time-invariant linear plant is defined according to the state equation

X=Ax+bu+d+cr (2.1
- p— P - P

wherein the state vector x = [xi] is of dimension n. u and r are scalar control
and reference inputs respectively, with Ep = Ebi]’ <, = [Ci]’ and d = [di] is an
unknown bounded disturbance. In assuming that x is in normal form, only the
coefficients of the last row of Ap are subject to uncertainty. Specifically, if
Ap = [aij]’ then some or all of the parameters ani’i =1, ..., h may be unknown,
the other coefficients being zero except for the terms on the super diagonal
which, for the normal form, are defined as unity.

As discussed in [4], it the elements of Ep are not presumed to be known

exactly, then the design requires, for the case treated here in which u is a

scalar, that bi 0 for i # n. This is compatible with the normal form, and is

in keeping with the development in [5] which allows for the presence of deri-

vatives of the forcing function in the differential equation of the plant.

The case In which therc are derivatives of the input is treated in Section V.
The stable Time-invariant model, which is assumed to have the same

mathematical structure as the plant, is defined by

- (2.2)
y=Ay+br

where

y = [y;], b, = [Bij’ Ay = [mij]’ and r is the scalar input.
The design objective is to adapt one or more of the compensating gains
(to be defined) so as 1o realize an asymptotic bound on the norm of the error,

e Q{y where e = y-x. The design approach is based on [2,5] except that here

we assume some ignorance of all plant parameters, even though some of the



compensating gains may be nonadaptive. Recognizing that a reduction of the
number of adaptive gains certainly simplifies the requirements on instrumentation,
the purpose of this study is to examine the consequences of such a simplification
upon system performance. In past works the presence of measurement noise has

been ignored, and the parameters associated with the nonadaptive gain terms

have been assumed to be known exactly.

Fil.  Summary Statement of the Control Law with n =0, d =20

In order to simplify the notation, the results which serve as background
material to the paper will first be stated subject to the assumptions that there
are no derivatives of the input, and that there are no measurement noise and
disturbance present. Thus, summarizing the results of previous work, and making
the assumption that the control of the plant can be accomplished through u only,
that is to say, that plant parameters cannot be adjusted directly, we shall write
the differential equation for the tracking error as

é=Ae+f (3.1

e
-
with

f=AX+ {(B~c)r~-bu (3.2)
- = mSp T op

wherein A = Am—Ap with elements [53j], (Em-gp) = [éi], and f = [fi]. The object
being to guarantee stability of the equilibrium at e = 0, a Liapunov function is

defined by

V=ePe+old (3.3)

in which P = Epij] and i~=E¢i] is a vector to be defined, with dimension n + |.

The Time derivative of V following the motion can be shown to be given by

y T . (3.4}
Y o= Am Pt PAm + 2 (yfn + g_?}
wherein
n
Yy =1 p, e, (3.5}




e
and fn is the last element of f. In deriving (3.4) it is helpful to recognize
that, for the normal form, gTPj.x yfn, since fn is the only element of f that
can be non-zero, as given by

n
t =3 & . %, +8 r-bu, (3.6)

0, then with any positive

|

If it is now required in (3.4) that (yf + ¢ )

definite symmefric Q, and P satisfying the equation
AT

-Q = Am P + PAm (3.7)

V is a Liapunov function.

This result is obtained by satisfying the following reilationships:

¢i = Ai (dni - bn ki)’ 1= 1l,..0e, n (3.8)
¢n+l = Ar (én - bn kr)
with
. 2 _—
ki = X, y/ki bn’ i =1, «..,n (3.9)
° 2
kr = y/kr bn
wherein Ai’ Ar are real and non zero, and
n
u = i ki X; + kr r. (3.1

It is important to nofe that V as defined in (3.3) is positive definite in
the space defined by e, ¢. Thus v in (3.4) is negative semidefinite, and The
equilibrium at e = 0, ¢ = 0 is stable. However since V is negative definite in
the e space, the equilibrium at e = 0 is asymptotically stable.

It 1s of further intcrest fo note that,

by the well known corollary to the Liapunov Theorem on asymptotic stability [6],
the equilibrium at e = 0, ¢ = 0 is in some cases asymptotically stable as well,

It must merely be shown that the solution at e = 0, ¢ # O cannot be an equilibrium.
For the conditions that r(f) contains all frequencies, and that the plant and

model have the same structure, It follows that there is only one unique set of
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gains [k, kr] for which e Is identically zero, i.e. with ¢ = 0. Hence there can
be no solution for é_z 0, é.z 0 at other than e = 0, ¢ = 0, and the corollary

applies.

IV. Stability Criterion with Gain Constraints and Disfurbance

Assume now that one or more of the gain terms in [k, kr] is constant. Then
¢ in (3.3) is constructed to have elements corresponding to each of the adjustable
gains in [5, kr]’ as defined in (3.7). Since it is always possible to redefine
the coefficients in Ap and Ep of (2.1) so as to include the constant gain terms,
the statement that the gain terms in Cﬁ, kr] which are constant are also zero
valued suffers no loss of generality. If then we let m elements of k, as well
as kr’ be identically zero, (3.4) becomes equal to

Y — s T m -
V=~ Qe + 2y[26nixi + ﬁnr dn]. 4.1
m

Here I signifies the sum of m terms, but not necessarily in a sequence of successive

infegers. Clearly asymptotic stability in e is no longer assured by (4.1). How-
ever if a spherical region Re in e can be found outside which Vis negative, Then
the motion in e will be bounded [7].

To find such a region, if It exists, we replace X; by yi~ey, and fet Q be
the identity matrix. Then substituting the expression for y from (3.5), (4.1)

becomes
. T n m
V=-ee+ ZiE[ pinei(z éni(yi~ei) + Gnr - dn). 4.2)

I+ is readily shown that V < O if

T n m m
e'e > zzlpinleii<zlsniiieii + z}ani}iyii + isn}}r[ + idnl)q (4.3)

i=

Denoting Prax and [5} as the maximum values of Pin and fénif respectively, a

max
stronger condition than (4.3} is given by

T m m m .
ee>2p Z[eil [léfmax(zfe;{ + E[yil) + {6nlfr} + {dn(], (4.4).

max




Using iTnequalities [8]

1 i1
e < (ns e2)!/2
. i i
i=i =]
m 0 (4.5)
n
Z le‘! < (mZX e?)l/Z < ¥/ (2 e.z)l/2
[
a still stronger condition than (4.4), with Re = (eTe)‘/z, becomes
2
Re ’ 2pmax Vﬁ-tlslma§¢E.Re m {y'max)+ ’Gnllrlmax * ’dnlmax]' (4.86)
where 'y’max’ ‘r’max’ and Idnlmax denote m:x of the set IY;I» Ir], and ldnl,
respectively. |If
(a-2p lslmax yam) > 0, (4.7)

it follows that V < 0 outside the region

= 2‘/;Tpmax(lcslmax m IYlmax * !dn‘ Irlmax * !dnlmax)° (4.8)
© l-2p _ |8] __ Vom
max max

The condition (4.7) is a test for the existence of a region Re <®, and is a
sufficiency condition for stability (Lagrange) if, as has been assumed, eTPe in
(3.3) Is positive definite. Thus using the notion that the actual ultimate bound
for e must be determined by a contour of gTPg = constant circumscribing the sphere
of radius Re’ where P is defined by (3.]), it is readily shown that e must

ultimately be within a sphere of radius R' where

2 1/2
R9 - _max R (4.9)
e X e’
min
and A A . are the max, min eigenvalues, respectively, of the P matrix. Since

max’ “min

P is positive definite, X _ /A is a finite positive real number, and R; is

max’ "min
finite if Re is finite.

b Re is zero, the system is asymptotically stable in e space.
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V. Stability Criterion where there are Input Derivatives

in [5] the adaptive control law is derived for the general case in which
there may be up to n-| derivatives of the control Input appearing in the differ-
ential equation of the plant. The essential result in [5] is to show that a
reduced-order error equation similar to (3.1) can be expressed as
e=Age+bli=z, -b ul (5.1

P

" PD) 15 4 reduced-order state vector, n belng the

where gT = (e, é, sy
dimension of the plant state vector x,and p being the highest order of the input
derivative. In (5.1) ET = (0, 0, ..., I); and bop’ [«i], are unknown constants
comprised of model and plant parameters. The terms [zi] represent the inputs to
the compensating gains. Whereas in the case treated previously the inputs to these
gains are composed of plant state variables and the reference input, some of the
zi“s are derived by processing these signals through a low-pass filter, as a
consequence of The technique for reducing the order of the state equation (5.1).

In order to find an error bound in this case when certain of the gains [ki]
are held constant, attention is directed to the expression for V which evolves in

a form similar to (4.1), namely
V=-ee+21 p, e, (o =z, - d) (5.2)

where m is the number of gain terms held constant (at zero). A difficulty now
arises in paralleling the step in going from (4.1) to (4.2) in which y; = e; was
substituted for X, Consider a term z, = &-'[H(S)Xi(s)j = &f'[H(s)(Yi(s)—Ei(s)ﬂ,
and let

¢, = .f'[ms)Ei(s)] (5.3)

where H(s) describes the low pass fiiter mentioned above. I+ will be seen Tthat,
in order to arrive at an expression such as (4.6), it Is necessary To derive an

inequality relationship from (5.3) on the assumption that a bound R; exists.
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Since by (4.9} Ré can be expressed in Terms of Rey the inequality relationship for

satisfying the condition V < 0 can then be formulated in terms of Rpp and the test

-

for the existence of Re can be applied. If Re exists, then the assumption That
Ré exists is valid.

From (5.3) it follows with h(t) = £ 'H(s) +hat

©

Ei(f) = [ ei(T—A) h (A) dx. (5.4)
0

I+ we assume that leil < R!, then from (5.4) it follows

w0

}gi(ﬂt <R ( [hta)] d . (5.5)
0
By the condition imposed in [5] that H(s) is a stable filter, there is a finite

number N such that

¥
le, O] < RN,
Now by (4.9) L/2
max
lE;(‘f)!i [A : J N Ry
min

From this point, the derivation of a relationship similar Tfo (4.6) follows without
difficulty.
It has been the purpose of this section to show that the results contained

in Section V can be extended fo fthe general case.

VI. An Error Bound due to Measurement Noise

If the measured state vector of the plant is defined as w = x + n, where n is
The measurement noise, it follows that (2.1) becomes
w=Aw+bu-++h .
w N h (6.1)

with h = d + gpr +tn - Apﬁf f a pseudo tracking error is now defined by € =y -~ w

where y Is the oufput of the model (2.2), then the state equation for the pseudo

error Is given by




€=Ae+ f (6.2)
where

fi=Aw+ B.r-h- gpu.

By having assumed that the system equationis innormal form, it is reasonable to
consider the elements of the noise vector to be defined as DT = [n',ﬁl,...,n(n—')].
Hence 1t follows that eT = [el,é|,...,e(n~l)]. Thus (6.4) is in normal form,

and f' can be shown fo have only one non-zero component, namely fé. This allows
the analysis of Section Ili and IV to be applied directly to the present problem
wherein the bound on ¢ is sought about the equilibrium ¢ = 0. Since e = n + ¢, a
bound on e can be found if bounds on n and ¢ are known.

Analysis shows that if the system is stable in e space without noise, then
the error is bounded when noise is present, if the terms n, é_appearing in h are
bounded. This result is not very satisfying, however, because the dependence of
tThe bound on é_was caused by the necessity for restructuring the system equation
to be In the form (6.1) so that the nolse enters the system in the form of a
disturbance. Although the solution is found by this artifice, the result is
h]ghly‘ artificial. For this reason it is important fo determine the system
performance by simulation if a reasonable evaluation of the effects attributable

to noise is fTo be had.

VI| Example

The system shown in Figure | is used to illustrate the concepts which have
been introduced, taking into account the presence of measurement noise. Resulfs
obtained by simulation are compared with the calculated error bound.

The assumption is made that k‘ and kz are not known exactly. We assume

however that Rz is known to within 20% of the nominal value whereas i, may

differ widely from nominal. Hence, although fThe adaption with respect to
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[Wi,rj is required, The need for an adaptive loop with respect to w, Is
questicnable,
For this example, the input was taken fo be a five-volt square wave having
a period of two seconds. A twenty percent offset was made in k2 (k2 = 5.,28),

compared fa its nominal value of 4.4. The value of k, was not important since

the W loop was always operative. A value of kl = 5 was used Throughout.

In The absence of measurement noise, and with the w., loop inoperative,

2
the bound Ré can be found as follows:

Let Q = 1. Then using (3.7), with Am as specified by the model, it

.47 .05
P = .
.05 125

Substituting numbers into (4.8) according to

follows that

n=2,m=1,p. =0.125 ¢ =0.84, ymax=|y2|max=10, § =0,
it follows that Re = 4.4 volts. |f the eigenvalues of the P matrix are computed,
the desired result in (4.9) is found to be Ré = |5 volts.

By simulation the actual error bound was determined to be [.2 volts. Hence,
as Is to be expected, the calculated bound is conservative.
Adding measurement noise to the system, the simulation was used to determine

at what noise level, if any, the inclusion of the adaptive loop involving W,

would In fact degrade system performance. For this purpose, the noise n, was
chosen to be a random signal with a low frequency power spectrum spanning the

bandwidth of the system. With N, = ﬁ!, this resulted in n, having peak values

2

eighty times the peak values of ny-
It was found that, with the w

2 adaptive loop operating, a noise n, having

peak amplitudes of 50 millivolts produced an error signal (Ei) with The same

peak amplitude (0.35 volts) as that which was obtained with the w, adaptive loop

2
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inoperative. Hence the noise inserted through the adaptive loop involving W,
nullified the advantage offered by that adaptive gain. The fact that the noise
signal had such a pronounced effect is attributed to the relatively large noise

level associated with n,-

Vi1 Conclusions

The presence of measurement noise is shown to be an important factor in
the design of adaptive systems. For those cases in which certain plant parameters
are known with fair accuracy, it is found that better system performance may
result by eliminating certain adaptive loops. In this case stability of the
adaptive system is no longer asymptotic, and stability must be expressed in
terms of an error bound. The expression for an ultimate bound on the tracking
error is derived in Terms of known bounds on cértain of the plant parameter
deviations. However, the result is conservative, so that particularly when

noise is considered it is advisable to resort to simulation methods.
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